How endogenous plant cell-wall degradation mechanisms can help achieve higher efficiency in saccharification of biomass.

نویسندگان

  • Eveline Q P Tavares
  • Amanda P De Souza
  • Marcos S Buckeridge
چکیده

Cell-wall recalcitrance to hydrolysis still represents one of the major bottlenecks for second-generation bioethanol production. This occurs despite the development of pre-treatments, the prospect of new enzymes, and the production of transgenic plants with less-recalcitrant cell walls. Recalcitrance, which is the intrinsic resistance to breakdown imposed by polymer assembly, is the result of inherent limitations in its three domains. These consist of: (i) porosity, associated with a pectin matrix impairing trafficking through the wall; (ii) the glycomic code, which refers to the fine-structural emergent complexity of cell-wall polymers that are unique to cells, tissues, and species; and (iii) cellulose crystallinity, which refers to the organization in micro- and/or macrofibrils. One way to circumvent recalcitrance could be by following cell-wall hydrolysis strategies underlying plant endogenous mechanisms that are optimized to precisely modify cell walls in planta. Thus, the cell-wall degradation that occurs during fruit ripening, abscission, storage cell-wall mobilization, and aerenchyma formation are reviewed in order to highlight how plants deal with recalcitrance and which are the routes to couple prospective enzymes and cocktail designs with cell-wall features. The manipulation of key enzyme levels in planta can help achieving biologically pre-treated walls (i.e. less recalcitrant) before plants are harvested for bioethanol production. This may be helpful in decreasing the costs associated with producing bioethanol from biomass.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Overexpression of GA20‐OXIDASE1 impacts plant height, biomass allocation and saccharification efficiency in maize

Increased biomass yield and quality are of great importance for the improvement of feedstock for the biorefinery. For the production of bioethanol, both stem biomass yield and the conversion efficiency of the polysaccharides in the cell wall to fermentable sugars are of relevance. Increasing the endogenous levels of gibberellic acid (GA) by ectopic expression of GA20-OXIDASE1 (GA20-OX1), the ra...

متن کامل

Analysis of pectin mutants and natural accessions of Arabidopsis highlights the impact of de-methyl-esterified homogalacturonan on tissue saccharification

BACKGROUND Plant biomass is a potentially important renewable source of energy and industrial products. The natural recalcitrance of the cell walls to enzymatic degradation (saccharification), which plants have evolved to defend themselves from biotic stresses, represents a major bottleneck for the industrial bioconversion of lignocellulosic biomasses. The identification of factors that influen...

متن کامل

AtCesA8-driven OsSUS3 expression leads to largely enhanced biomass saccharification and lodging resistance by distinctively altering lignocellulose features in rice

BACKGROUND Biomass recalcitrance and plant lodging are two complex traits that tightly associate with plant cell wall structure and features. Although genetic modification of plant cell walls can potentially reduce recalcitrance for enhancing biomass saccharification, it remains a challenge to maintain a normal growth with enhanced biomass yield and lodging resistance in transgenic plants. Sucr...

متن کامل

Advances in Genetic Manipulation of Lignocellulose to Reduce Biomass Recalcitrance and Enhance Biofuel Production in Bioenergy Crops

Lignocellulose biomass derived from plant cell walls is a rich source of biopolymers for the production of biofuels. Biomass recalcitrance is the noticeable and main features of lignocellulose which can reduces by genetic modification of plant cell wall. The aim of the present review is to provide the reader a new insight for enhancing biomass yield and biofuels production. This can be issued b...

متن کامل

Lignin monomer composition affects Arabidopsis cell-wall degradability after liquid hot water pretreatment

BACKGROUND Lignin is embedded in the plant cell wall matrix, and impedes the enzymatic saccharification of lignocellulosic feedstocks. To investigate whether enzymatic digestibility of cell wall materials can be improved by altering the relative abundance of the two major lignin monomers, guaiacyl (G) and syringyl (S) subunits, we compared the degradability of cell wall material from wild-type ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of experimental botany

دوره 66 14  شماره 

صفحات  -

تاریخ انتشار 2015